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Car accidents on a single-lane highway
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We study the occurrence of car accidents in the Nagel-Schreckenberg model. Both the effects of stochastic
braking and speed limit are analyzed. An approximate scaling relation is observed with the varying of speed
limit. The stochastic noise will enhance the probability for accidents in the low density region and suppress that
in the high density region. The probability for car accidents to occur becomes a broadened distribution over a
wide range of density.
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I. INTRODUCTION (v=1) is decreased by one with a braking probabifiy In
the fourth rule, the position of a car is shifted by its speed

The cellular automaton approach to traffic flow has at-lterations over these simple rules already give realistic re-
tracted much interest recentl]. Compared to other ap- sults. The model contains three parameters: the maximum
proaches in modeling traffic flow, cellular automaton modelsspeed ,.x, the braking probability,, and the average den-
can be used very efficiently for computers to perform realsity p=N/L. The real traffic data can be well described by
time simulations[2]. As the underlying dynamics is gov- parameters,,,=5 andp;=0.5, where the length of a cell
erned by a few simple update rules, this approach also allowis 7.5 m and one time step corresponds to approximately 1 s
the flexibility to adapt complicated features observed in rea[5].
traffic. More recently, the occurrence of car accidents has In the basic model, car accidents will not occur. The sec-
been studied within this framework. In R¢8], the numeri- ond rule of the update is designed to avoid accidents; the
cal works have been reported. In Rpf], the exact results driving scheme respects the safety distance. In real traffic,
are analyzed. However, the speed limit has been set too loear accidents occur most likely when drivers do not respect
and the stochastic driving behavior has not been considerethe safety distance, which often happens when the car ahead
Thus results an unrealistic feature: the accidents occur onlis moving. If a moving car is suddenly stopped, careless
when the car density is high; at low density, there are nalriving of the following car will result in an accident. In Ref.
accidents observed. In real traffic, accidents also occur in thgg], an approximate probability for an accident to occur is
low density region. When the density is low, the speed isproposed. When the following three conditions are satisfied a
high. Careless driving could easily result in an accident. Ifcar will cause an accident with a probabilips. The first
one considers the occurrence of car accidents per car, insteadndition isd<uv .4, Which means the position of the car
of per road, there might not be much difference between thehead can be reached by the next time step. The second
low density and high density regions. condition is a moving car ahead. The third condition is that

Thus it would be interesting to study this problem with athe moving car ahead stops at the next time step. The occur-
general spectrum. In this paper, we study the occurrence @&nce of car accidents is proportional to the probabgityIn
car accidents in a cellular automaton model. Both the effectghe following, p,=0.1 is simply assumed. The probability
of stochastic braking and speed limit will be analyzed. Theper car and per time step for an accident to occur is denoted
accidents resulting from not keeping the safety distance angy P, . In Ref.[3], the value ofP,. is studied in the special

speeding will also be discussed. case ofv,,x=3 andp;=0. In the next section, we study the
dependence oP,. on bothv,,,x andp;. We also note that
Il CAR ACCIDENTS the first condition of accidentsl<v 4, presumes that both

the safety distance and the speed limit were not respected.

The Nagel-Schreckenberg model is a basic model of trafWith d=v,,,, the position of the car ahead can only be
fic flow on a single-lane highwaj5]. The road is divided reached at the next time step by a car with a speed larger
into L cells. Each cell can be either empty or occupied by ahan the speed limit, i.eu,=v 4+ 1. These two issues can
car with an integer speade {0,1, . .. pmax, Wherev,.xis  be easily separate. The effects of speeding can be excluded
the speed limit. With periodic boundary condition, the num-by replacing the condition witll<v ... The differences
ber of cars is conserved. At each time step, the configuratiowill also be discussed.
of N cars is updated by the following four rules, which are
applied in parallel to all cars. The first rule is the accelera- IIl. NUMERICAL RESULTS
tion. If the speed of a car is lower than,,,, the speed is
advanced by one. The second rule is the slowing down due First, we study the dependence of speed limjt,.. The
to other cars. If a car had empty cells in front of it and a stochastic noise is neglected, i.p;,=0. Car accidents will
speed larger thad, the speed is reduced tb The third rule  not occur until the density reaches a critical value. With the
is the randomization, which introduces a noise to simulaténcrease of density, the value ofP,. increases, reaches a
the stochastic driving behavior. The speed of a moving camaximum, and decreases with further increasp.ofhe nu-
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FIG. 1. ProbabilityP,. as a function of density for various FIG. 2. ProbabilityP,. as a function of stopped car fractiog

Umax- The braking probabilityp,=0. The data are obtained with a for variousv ,,¢. The braking probabilityp;=0.

system ofL=10%; an average over 500 time steps and 50 initial

configurations is taken for each data point. increase of braking probability;. In the low density region,
increasingn leads to a larger value &f,.. On the contrary,

eh the high density region, increasing, leads to a lower

" value of P,.. Thus the distributior?,.(p) is broadened over
a much wider range of density.

¢ The critical density decreases with the increasepof

merical results are shown in Fig. 1. The density for the ons
of P,¢ is known as the critical density, below which no ac
cidents will occur. The density for the maximum Bf. is

known as the most probable density, at which accidents o

cur most frequently. Near the critical density, the value Bf,.. is still proportional

As;rp:]escnfbed 'rr] theidthgf[:ii c?nldlttlodn d?rf atrl] ?cct:;je?]t,r;geto ny. However, the proportional constant decreases with the
occurrence ot a car accident IS retate ectly fo the NUMBEE, - o ase ofp,. The results are shown in Fig. 4. With a large
of stopped cars. Below the critical density, there is no,

) ... _braking probabilityp,, drivers are apt to drive slower. In a
stopped cars and therefore no accidents. Near the Cmm%'ertaingvx?ay the d):ir\)/ling is more cargful. With the same frac-
density, the value oP,. is proportional to the fraction of '

. . . tion of stopped cang, the occurrence of car accidents is
stopped carsy. As further prescribed in the second condi- PP 0
tion of an accident, only the suddenly stopped car will cause

1 | | | ]
an accident. Thus in the high density region, whegealso 0.025 ' ' ‘ '
assumes a large value, the traffic flow becomes a stop-and-g ° pp =01
wave and the value oP,. decreases linearly with the in- & pp =02
crease ofh,. The results are shown in Fig. 2. 0.020 + , =903 0000, T

As the speed limiv 4, increases, the probability for the x p, =04 22AAAMAAAAAOOO
occurrence of car accidents increases as expected, especia < p, =05 @g;+++ﬁ+++++++AA o
in the low density region. When the density is high, the 0.015+ k xxxxx><><><><xxxx ++AAOO 4
speed limit is irrelevant and a scaling relation is expected. AI ﬁfxxx....-.oo.... >S<><++AAO
similar behavior has also been observed in the fundamentg' ac %;g__,.. ><x++AO
diagram, ie., the flow versus density. With increasingy, 0.010+ ﬁa e Xato 1
both the critical density and the most probable density shift o XMy
toward the low density region. It is interesting to note that }Ao '-’:::io
the onset ofP,. is smoother in the case with a higher speed o o
limit, which also reflects a similar behavior in the onset of 0:0051  ~s, &1
ny. An approximate scaling betweét,. andng can also be .+Ao 4
observed in Fig. 2. The case of,,,=1 is an exception e $
where an additional particle—hole symmetry dictates the be- ~ 0.000-exwesoo— I 1 I
havior. 0 0.2 0.4 0.6 0.8 1
When the stochastic driving behavior is considered, the p

value of P, is enhanced in the low density region and sup-
pressed in the high density region. The results are shown in FIG. 3. ProbabilityP,. as a function of density for variousp;.
Fig. 3. The fraction of stopped carg, increases with the The speed limiv ,,,=5.
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FIG. 5. ProbabilityP,. as a function of density. The speed
limit v,.=5 and the braking probabilityp;=0.5. The closed
circles are the results af<uv ,,,; the open circles are the results of
suppressed. However, the number of stopped cars increas%é”max’ Whigh exclude the effects of the speeding. The solid line
with the increase op;. With the same car density, the 'S he mean-field result
occurrence of car accidents is enhanced. The scaling relation
betweenP,. and ny can still be observed in the very high
density region, where most cars are stopped. It is interesting
to note that the scaling relation shown in Fig. 2 is due to th
irrelevance of speed limit,,,, in the high density region.
There is also a scaling relation betweleg. andp with dif-
ferentv .y, See Fig. 1. However, the braking probabilgy

FIG. 4. ProbabilityP,. as a function of stopped car fractiog
for variousp;. The speed limiv ,,5,=5.

IV. CONCLUSION

In this paper we study the occurrence of car accidents in a
Sraffic model. The probability per car for an accident to occur
(P4e) is related to the fraction of stopped cars on the road
(ng). In the low/high density region, the value d?,.
increases/decreases with the increasepfThe effects of

is important in the high density region. There is no scaling,[he braking probabilityp, and the speed limit, ., are ana-

betweenP,. andp with differentp,, see Fig. 3. - : : : :
PO . lyzed. Without stochastic noise, the increase will
We observe that only a small fraction of accidents resulty URfax

from speeding, i.e.d=vax in the first condition of acci-

dents. The results are shown in Fig. 5. This can be readily =~ 0-025 ’ ’ ‘ ’
understood from the approximate scaling relation betweer Ay, =2
Pac andng with differentv . V=S
Neglecting correlations, an analytical expression for the 0.0201 &+ y =10 -
probability P, can be obtained within the mean-field theory Xy =20
as
0.015+ -+
v
pa [ P
Pacm—| 2 (1=p) Hp(1=no)}{pno}, (1 Fac S
P i=0 Xf_ . ads AT *
0.010-+ Xt 8 RS +
L 28 Aﬁg
. xt+ *° A
where the factors in three braces correspond to the thre: o .’ A ﬁﬁﬁ
conditions of accidents, respectively. The result are shown ir o N *
Fig. 5. The mean-field results approach the data around the ~ 9-005T . =T
critical density and also in the very high density limit. In ‘ A *
between these two densities, the mean-field theory overesti . AAA **
mates the value oP,.. As the mean-field theory neglects 0.000-sdsnsst | I 1 I
; & will ai ; 0 0.2 0.4 0.6 0.8 1
correlations, it will give meaningful results only when the
value of P, is small, i.e., the onset d?,. and the very high P

density limit. Basically, the occurrence of car accidents can-
not be well-described without considering the correlations,
both spatial and temporal.

FIG. 6. ProbabilityP,. as a function of density for various
Umax- The braking probabilityp;=0.5.
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soften the onset oP,.. On the contrary, with stochastic v,,=1 is related to the particle—hole symmetry, which is
noise, the increase af,,4 will steepen the onset oP,.. absent forv > 1. With this scaling, the value &, will
The critical density decreases with the increase of both stancrease only a little by further increasing,,,, see Fig. 6.
chastic noise and speed limit; the most probable density alsthus instead of speeding, most car accidents are the result of
shows the same feature. The maximuniPgf increases with  not keeping the safety distance.
the increase of speed limit, but decreases with the increase of Basically, both spatial and temporal correlations are im-
stochastic noise. The stochastic driving behavior willportant in the phenomena of car accidents. Thus the distribu-
enhance/suppress the value Bf. in the low/high density tion P,.(p) cannot be well described by the mean-field
region. Thus the distributioR,.(p) is broadened. theory. When the value d?,. is small, i.e., near the critical

A higher speed limit will enhancé®,. for all density. density and in the very high density limit, the mean-field
However, the effects decrease with the increase,gf;,. An results are satisfactory. An analytical approach including
approximate scaling relation betweBy. andn, is observed both spatial and temporal correlations is desired and left for
with various values ofv,.,. The exception of the case future study.
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